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Abstract. It is shown that in semiclassical electrodynamics, which describes how electrically
charged particles move according to the laws of quantum mechanics under the influence of
a prescribed classical electromagnetic field, only a restricted class of gauge transformations is
allowed. This lack of full gauge invariance, in contrast to the situation in classical and quantum
electrodynamics which are fully gauge-invariant theories, is due to the requirement that the scalar
potential in the Hamiltonian of wave mechanics should represent a physical potential. Probability
amplitudes and energy differences are independent of gauge within this restricted class of gauge
transformation.

1. Introduction

This paper is about the role of gauge in the wave mechanics of a charged particle moving non-
relativistically in an externally prescribed electromagnetic field. The motion of the charged
particle is described by the free-particle Schrödinger equation supplemented by minimal
coupling of the charge to the potentials of the electromagnetic field.

The question of the effect of gauge transformations on the Hamiltonian of the Schrödinger
equation and on transition probability amplitudes has had a long and sometimes contentious
history. It was suggested by Lamb (1952) that in the hydrogenic spectrum different lineshapes
would be calculated depending on whether the perturbation between the electron and the
electromagnetic field was taken to be A · p or E · r, the different forms of the interaction
being related by a gauge transformation (Stewart 2000). Although the particular case raised
by Lamb appears to have been resolved subsequently by considering the intermediate states in
the radiative process, see Cohen-Tannoudji et al (1989) for a review (but also see the discussion
of Woolley (2000)), the suggestion remained that transition amplitudes and probabilities
could depend on gauge. It was also pointed out by Yang (1976) that the Hamiltonian of
the problem was not independent of gauge and so a question arose as to the interpretation
of the energy. There was much discussion of the issue in the literature (Aharonov and Au
1981, 1983, Feuchtwang et al 1984a, b, 1982, Haller 1984, Kobe 1978, 1982, 1984a, b,
Kobe and Yang 1987a, b, Power 1989, Power and Thirunamachandran 1978, Rau 1996,
Schlicher et al 1984, Yang 1981, Woolley 2000) but no clear consensus appears to have
emerged.

This paper proposes a new approach to the problem in which gauge freedom is explicitly
maintained throughout by the presence of an arbitrary gauge function in the equations. In
section 2 we recall the derivation of the Schrödinger equation for a charged particle in an
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electromagnetic field and in section 3 we obtain the basis functions that are used to describe
stationary states and that are needed for use in perturbation theory when an arbitrary gauge is
adopted. In section 4 we obtain matrix elements of operators in an arbitrary gauge and find
that the Hamiltonian is not gauge invariant. In section 5 we realize that for the scalar potential
to represent the physical potential a restricted set of gauges must be used, namely those that
are a sum of functions that depend, respectively, on spatial coordinates only and on time only.
In section 6 we find that probability amplitudes are essentially independent of gauge within
this restricted set and in section 7 we discuss why semiclassical electrodynamics, in contrast
to classical and quantum electrodynamics, is not fully gauge invariant. In the appendices a
gauge transformation needed for the basis functions describing time-independent fields and a
result concerning the canonical commutation relations are obtained.

2. Schrödinger equation

The Lagrangian of a particle of charge e and mass m at position r and time t in the
electromagnetic field described by vector potential A(r, t) and scalar potential φ(r, t) is taken
to be (Doughty 1980, Schwinger et al 1998)

L = mv2/2 + e(v · A − φ) (1)

where the velocity v is given by v = dr/dt .
If the electromagnetic potentials A and φ are transformed into Aχ and φχ by

A → Aχ = A + ∇χ

φ → φχ = φ − ∂χ/∂t
(2)

where ∇ is the gradient operator with respect to r and the subscript attached to the potentials
indicates the gauge function that is used, then the electromagnetic fields B and E given by

B = ∇ ××× A

E = −∇φ − ∂A/∂t
(3)

are unchanged. The arbitrary scalar field χ(r, t) is known as the gauge function and the
transformation as a gauge transformation. The gauge function is required to satisfy the
condition {(∂/∂i)(∂/∂j) − (∂/∂j)(∂/∂i)}χ = 0 everywhere, where i and j are any pair
of the coordinates x, y, z and t . Under the gauge transformation, the Lagrangian in the new
gauge becomes

Lχ = mv2/2 + ev · (A + ∇χ) − e(φ − ∂χ/∂t) (4)

the additional terms amounting to the total derivative dχ/dt thereby leaving the Euler–
Lagrange equation

m dv/ dt = e(E + v ××× B) (5)

unchanged. In the new gauge the canonical momentum of the particle pχ = ∂Lχ/∂v is given
by

pχ = mv + e(A + ∇χ) (6)

and the Hamiltonian Hχ(pχ , r, t) = v · pχ − Lχ by

Hχ(pχ , r, t) = {pχ − e(A + ∇χ)}2/2m + e(φ − ∂χ/∂t). (7)
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The passage to the wave mechanics of Schrödinger is made by changing classical
observables into operators and taking the Hamiltonian to be equivalent to the operator ih̄(∂/∂t)
acting upon a wavefunction �(r, t) which is the probability density amplitude for the particle
to be at position r at time t and h̄ is Planck’s constant. Furthermore, from the canonical
commutation relations [ri, pj

χ ] = ih̄δi,j of Dirac (1947) the canonical momentum pχ becomes
the differential operator −ih̄∇ (but see appendix A). This, true in all gauges, leads to the
Schrödinger wave equation

Hχ(−ih̄∇, r, t)�χ(r, t) = ih̄(∂/∂t)�χ(r, t), (8)

the Hamiltonian Hχ in the gauge χ being given by (7).
From the readily verified identity

{(p − e(A + ∇χ)}s� exp{ieχ/h̄} = exp{ieχ/h̄}{p − eA}s� (9)

where p = −ih̄∇, s is a positive integer and � is any function of r and t , it follows that if,
under a gauge transformation, the wavefunction is assumed to transform according to

�0(r, t) → �χ(r, t) = �0(r, t) exp{ieχ(r, t)/h̄} (10)

then Hχ�χ = ih̄(∂/∂t)�χ implies H0�0 = ih̄(∂/∂t)�0 or, in other words, the Schrödinger
equation is invariant in form under a gauge transformation.

3. Construction of basis functions

The object of wave mechanics is to obtain� from equation (8) given a particular set of potentials
and obtain physical quantities from the expectation values of the operators that correspond to
them. When equation (8) admits no simple solution the usual method of solving it is to expand
�(r, t) in a set of basis functions �n(r, t) that are solutions of some simpler equation as

�χ(r, t) =
∑
n

aχ,n(t)�χ,n(r, t) (11)

where the aχ,n(t) form a set of expansion coefficients. The quantum numbers n are associated
with a particular quantum state of the simpler system and the subscript χ is included to indicate
that all quantities may, in general, depend on the gauge that is used. The probability amplitude
p′
χ,n(t) for the system to be in state n at time t is defined to be the projection of �χ,n onto �χ ,

p′
χ,n(t) =

∫
�∗

χ,n(r, t)�χ(r, t) dr, (12)

where dr is the 3-volume element at r. If the �χ,n(r, t) are orthonormal with respect to
integration over space it follows that the probability amplitude is equal to aχ,n(t), depending,
in general, on gauge. The probabilities themselves |aχ,n(t)|2, being observables, should
not depend on gauge but the amplitudes, on the basis of this argument, might depend on
gauge.

Equation (8) cannot be solved by separation of variables to obtain the simpler set of
functions unless the operator on the left, Hχ , is independent of time. If the fields E(r) and
B(r) have no dependence on time it is always possible to find a gauge in which the potentials
have no time dependence either; we call them A0(r) and φ0(r). This claim is justified by the
following argument. The vector potential A can, as can any 3-vector, be expressed as the sum of
a solenoidal part AT , with ∇ ·AT = 0, and a longitudinal part ∇α(r, t) (Panofsky and Philips
1955). By making a gauge transformation with the gauge function equal to −α(r, t)+β(r)−γ t ,
where γ is a number, the longitudinal part becomes ∇β(r), independent of time. From
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∂B/∂t = 0 it follows that the relation ∂(∇ ××× AT )/∂t = 0 must hold. The useful solution
to this equation is ∂AT /∂t = 0, the other solution ∇ ××× AT = 0 is uninteresting as it gives
zero B. Accordingly, A0(r) = AT (r)+ ∇β(r) and is a function of r alone. The electric field
is given in terms of the transformed potentials by E = −∇φ0 − ∂A0/∂t . Since ∂E/∂t = 0
it follows that ∂∇φ0/∂t = 0; again the useful solution is ∂φ0/∂t = 0, the other solution
∇φ0 = 0 is also uninteresting as it gives zero E. Accordingly, φ0 as well as A0 can be chosen
to be a function of r only. We note that other time-independent gauges A0 ′ = A0 + ∇f (r)

and φ0 ′ = φ0 − g can be constructed with a gauge transformation using a gauge function
χ0(r, t) = f (r) + gt , where g is a number. Of course, time-dependent gauges for these time-
independent fields may be constructed by using a gauge function that depends more generally
on time, but are not appropriate for the present purpose.

We give two examples of time-independent gauges. The first is the potentials of electro-
and magnetostatics expressed in terms of the time-independent charge ρ(r) and current J(r)

densities (Panofsky and Philips 1955)

φ0
1(r) = 1

4πε0

∫
ρ(r′) dr′

|r − r′| and A0
1(r) = µ0

4π

∫
J(r′) dr′

|r − r′| . (13)

In the second example the potentials are expressed in terms of the fields in the multipolar gauge
(Kobe 1982, Stewart 1999, Valatin 1954, Woolley 1973)

φ0
2(r) = −(r − R) ·

∫ 1

0
E(q) du and A0

2(r) = −(r − R) ×××
∫ 1

0
B(q)u du (14)

where q = ur + (1 − u)R. The multipolar gauge describes generally the potentials that
arise from fields that depend on time, but of course can be used equally well with fields
that do not. It is shown in appendix B that the two sets of potentials above are related by a
gauge transformation with gauge function χ0(r, t) = f (r) + gt , and f (r) and g are obtained
explicitly. Of course, full gauge arbitrariness remains in expressions (13) and (14) because
another arbitrary gauge function χ ′ can always be added to them according to equation (2).
The gauge must then be fixed by setting χ ′ to zero, but it is only legitimate to do this if it can
be demonstrated that the result of the calculation of any physical property is independent of
χ ′.

However, due to the presence of χ the Hamiltonian operator on the left of equation (8) is
still time dependent even when the potentials are static. In this circumstance the wavefunction
cannot be separated into the product of a time-dependent part and a space-dependent part. To
find a solution to equation (8) with static potentials we temporarily set the gauge function to
zero. This gives

H 0
0 �0(r, t) = {(p − eA0)2/2m + eφ0}�0(r, t) = ih̄(∂/∂t)�0(r, t) (15)

with the zero superscript indicating that the potentials are time independent, i.e. that the gauge
function is set to zero. The operator on the left-hand side is now independent of time so the
wavefunction may be factored into a space-dependent part ψ(r) and a time-dependent part.
These separate to give

�0,n(r, t) = ψn(r) exp(−iEnt/h̄) (16)

with En and ψn(r) being given by the eigenvalue equation

{(p − eA0)2/2m + eφ0}ψn(r) = Enψn(r) (17)
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whose solutions En and ψn(r) are assumed to be obtainable. The ψn(r) are complete and
orthonormal because the operator on the left of (17) is Hermitian. The solutions of equation (8)
for static potentials and arbitrary χ can then be obtained from equation (10) to be

�χ,n(r, t) = ψn(r) exp[i{eχ(r, t) − Ent/h̄}]. (18)

It can be verified by substitution or from inspection of (10) that equation (18) is a solution
of equation (8) with the time-independent potentials A0 and φ0. The �χ,n(r, t) are solutions
of the time-dependent Schrödinger equation with arbitrary gauge for time-independent fields.
Because of the orthonormality of the ψn(r), the �χ,n remain orthonormal with

∫
�∗

χ,m(r, t)�χ,n(r, t) dr = δm,n. (19)

If the Hamiltonian of equation (7) is the exact Hamiltonian operator, the solutions �χ,n are
exact; if it is only part of the total Hamiltonian then the solutions (18) form a basis set with
which perturbation theory may be carried out.

4. Matrix elements

It can be seen from equation (10) that for an operator V to have matrix elements that are
independent of gauge and so be physically observable it must satisfy the relation

Vχ = exp(ieχ/h̄)V0 exp(−ieχ/h̄). (20)

Any operator that represents a physically observable quantity must be gauge invariant in this
way. Neither the operators A nor p are gauge invariant, but the operator p − eA is. From
equation (9) any operator consisting of positive powers of the components of (p − eA), such
as the spin–orbit interaction (Frohlich and Studer 1993), will satisfy equation (20). The
quantum mechanical operator identified with the particle velocity is v = dr/dt = [r, H ]/ih̄,
where H is the Hamiltonian. By commuting r with the non-relativistic Hamiltonian H =
(p − eA)2/2m + eφ, the velocity operator v is given by (p − eA)/m, so for this Hamiltonian
(p − eA) represents mv, the mass times the velocity.

The semiclassical Hamiltonian of equation (7) with pχ replaced by−ih̄∇ obeys the relation

Hχ = exp(ieχ/h̄)H0 exp(−ieχ/h̄) − e∂χ/∂t (21)

and so is not gauge invariant in the above sense. The first term on the right-hand side of
equation (7), the kinetic energy term, does on its own, satisfy equation (20), but because of
the presence of the ∂χ/∂t term the full Hamiltonian Hχ is not gauge invariant. Accordingly,
unless ∂χ/∂t = 0, the Hamiltonian cannot represent the energy which is a physical observable.
This is the issue addressed by this paper whose purpose it is to explain how gauge-independent
physical predictions can arise out of a Hamiltonian that is not gauge invariant in this sense and,
in particular, how probability amplitudes that are essentially independent of gauge can come
from a perturbation theory that uses a non-gauge-invariant Hamiltonian.

It is, of course, possible to find operators involving the Hamiltonian that are gauge invariant.
H − eφ = (p − eA)2/2m, the kinetic energy is one; another is {H − ih̄(∂/∂t)}, but this is not
very useful as it is identically zero.
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5. Scalar potential

Since the difficulty we have encountered is associated with the scalar potential we need to ask
the question of what is the appropriate gauge to use to describe the scalar potential so that it
accurately represents the physical potential. The physical potential at position r is the work
W(r, t) done to bring a charge e from a point R, usually at infinity, to r or

W(r, t) = −e

∫ r

R

E(q, t) · dq (22)

where the force F on the particle is given by F = m dv/dt from equation (5) and noting that
the magnetic field term vanishes identically. We see that the physical potential involves only
the gauge-invariant field E. There is no gauge arbitrariness in the physical potential apart from
the choice of origin R which just changes W(r, t) by the same amount everywhere, potential
differences remaining unchanged.

It is now seen that an appropriate gauge for describing the physical potential is the
multipolar gauge, because, from equation (14), and noting that dq = (r − R) du where
the integral is along the straight line from R to r,

φ(r, t) = −e

∫ r

R

E(q, t) · dq. (23)

When stationary states are considered it is necessary for the physical potential to be unique
which means that φ must be independent of path so the line integral of E around any closed
loop must vanish. From equation (3) the loop integral of ∇φ is, of necessity, zero, in whatever
way φ is defined, because φ is a scalar field. The loop integral of ∂A/∂t converts to a surface
integral of ∂B/∂t and if this is to be everywhere zero it follows that ∂B/∂t itself must be zero
everywhere. If we consider stationary states then ∂E/∂t must be zero as well.

By using equations (7), (10), (16) or (21) it follows that

H 0
χ�χ,n(r, t) = (En − e∂χ/∂t)�χ,n(r, t) (24)

and it is seen that as long as ∂χ/∂t = 0 the eigenvalues of the unperturbed Hamiltonian
are unchanged by a gauge transformation. Accordingly, we conclude that in semiclassical
wave mechanics the only gauge transformations that leave the eigenvalues of the physical
energies unchanged are those that do not depend explicitly on time. However, if the gauge
function is taken to have the form χ(r, t) = f (r) + g(t) then energy differences will remain
unchanged. Since only energy differences are of significance in wave mechanics, in contrast
to quantum field theory in which individual energies are significant, particularly when the
coupling to gravity is considered, it appears that gauge functions of this more general form
are acceptable in wave mechanics. Although up to now we have used gauge functions that
depend on both space and time, we now realize that those that depend explicitly on time are not
allowable except as mentioned above. The use of the Coulomb gauge is acceptable because
the gauge function of the transformation to it does not depend on time explicitly, although
of course, it does depend on time implicitly because it involves the implicitly time-dependent
vector potential in the original gauge (Panofsky and Philips 1955). It is in regard to the above
restriction on the gauge functions that may be used that semiclassical electrodynamics may be
said to be not fully gauge invariant.

6. Time development of probability amplitudes

We now take the potentials to have the more complicated form A = A0(r) + A1(r, t) and
φ = φ0(r) + φ1(r, t), where A0 and φ0 are the time-independent potentials describing static
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fields discussed in the previous sections of the paper and A1 and φ1, which are not necessarily
small, describe perturbing fields that generally depend on time. In this approach the gauge
is first fixed, namely specific mathematical forms are prescribed for A0, φ0, A1 and φ1 (for
example, A0 = −r ××× B0/2, φ0 = −e/(4πε0r), etc), and then unfixed by adding in the
arbitrary gauge function χ which, as discussed, essentially depends explicitly only on r. It is
necessary to show that the physical results obtained do not depend on χ(r).

By expanding the square in equation (7), namely Hχ = {p − e(A0 + A1 + ∇χ)}2/2m +
e(φ0 + φ1 − ∂χ/∂t) = H 0

χ + Vχ the wave equation (8) may be written formally as

{H 0
χ + Vχ − ih̄(∂/∂t)}�χ(r, t) = 0 (25)

where

H 0
χ = {p − e(A0 + ∇χ)}2/2m + e(φ0 − ∂χ/∂t) (26)

and

Vχ = −A1 · {p − e(A0 + ∇χ)}e/m + e2(A1)2/2m + ieh̄(∇ · A1)/2m + eφ1 (27)

and where the relation (p ·A1 −A1 ·p) = −ih̄∇ ·A1 has been used. The operator H 0
χ has the

form of an unperturbed Hamiltonian in the gauge χ and apart from χ has no dependence on
time. The basis functions arising from it are obtained as described in a previous section. The
perturbation Vχ of equation (27) depends on time through A1 and φ1 as well as χ . However,
the operator Vχ is gauge invariant and satisfies equation (20) because the operator p = −ih̄∇
generates the e∇χ term from the phase factor (−ieχ/h̄). Are the two sets of potentials (A0, φ0)

and (A1, φ1) considered to each have their own gauge function χ0 and χ1? If they are, then
since the sum of two arbitrary functions is another arbitrary function, the two may just be added
together to give χ , which may be incorporated in equations (26) and (27) as shown above.
The whole of the time-independent perturbation series arising from equations (25)–(27) is
independent of gauge; this is because the matrix elements are because Vχ is gauge invariant
and the energy denominators are because they are energy differences.

To obtain an explicit expression for the probability amplitudes the wavefunction is
expressed as a linear combination of the �χ,n according to equation (11) and as a result
of the presence of the perturbation Vχ transitions take place between the basis states causing
the aχ,n to vary with time. By substituting equation (11) into (25) we obtain

(H 0
χ + Vχ)

∑
n

aχ,n�χ,n = ih̄
∑
n

aχ,n(t)(d/dt)�χ,n + ih̄
∑
n

�χ,n(d/dt)aχ,n. (28)

Because the�χ,n(r, t) satisfy equation (8) with the time-independent Hamiltonian from which
the basis states are obtained, the first terms on the left- and right-hand sides of equation (28)
cancel. After multiplying the residual from the left by �∗

χ,m(r, t), integrating over r and
making use of orthonormality, equation (28) becomes

ih̄
daχ,m(t)

dt
=

∑
n

aχ,n(t)

∫
dr�∗

χ,m(r, t)Vχ(r, t)�χ,n(r, t). (29)

By making use of equations (18) and (20) the integral over r may be carried out to give

ih̄
daχ,m(t)

dt
=

∑
n

aχ,n(t)Vm,n(t) exp{i(Em − En)t/h̄} (30)

where

Vm,n(t) =
∫

drψ∗
m(r)V0(r, t) ψn(r). (31)
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The important point is that Vm,n(t) is independent of gauge. Consequently, the equations of
motion (30) for the aχ,m(t) are precisely the same for all gauges. Since the aχ,m(t) have to
satisfy the requirement

∑
n |aχ,n(t)|2 = 1 for the normalization of�χ(r, t) to be preserved the

only way that the aχ,m(t) may differ with gauge is by a phase that is independent of the gauge
function, by r or by t , in other words a number or a global phase factor. It follows that there is
no loss of generality in taking the probability amplitudes to be independent of gauge, namely
aχ,m(t) = a0,m(t). Consequently, the procedure that has always been followed to carry out
perturbation calculations, namely setting the gauge function to zero, is justified. This is the
main result of the paper.

7. Why is semiclassical electrodynamics not gauge invariant?

It is a truth universally acknowledged that the measurable predictions of any physical theory
must be independent of gauge. This being the case, it is necessary to provide a justification at
a fundamental level for the assertion made in this paper that in semiclassical wave mechanics
only a restricted set of gauge transformations is allowable.

The issue of the gauge dependence of the quantum Hamiltonian, equation (7) with
pχ = −ih̄∇, has been discussed by Yang (1976) who defined what he called an energy
operator which consists of the kinetic energy term and a potential energy term which has no
gauge properties. However, it is difficult to understand the validity of this approach as the
potential energy term in the cases that he considers, which involve the binding of an electron
to an atom, is a gauge potential and must be treated as a gauge potential as is done in the
present paper. On the other hand, Park (1990) considers that the inconsistency is due to the
non-relativistic nature of the theory in which time appears not as a quantum variable but as a
numerical parameter.

In this paper we take a different view. Semiclassical wave mechanics describes the
quantum motion of a particle in a prescribed external electromagnetic field. The field affects
the motion of the particle but the particle is not supposed to affect the field. The feature of
wave mechanics discussed in this paper, that the Hamiltonian is not fully gauge invariant, is a
consequence of this asymmetry in the theory. The same is found in the wave mechanics of the
single-particle Dirac equation (Stewart 1997a, b).

In other theories of electrodynamics, the symmetry of interaction between particles and
fields is preserved. In non-relativistic classical electrodynamics (Schwinger et al 1998) the
Hamiltonian is

H = (p − eA)2/2m + eφ +
∫

dr {ε0E
2/2 + B2/2µ0 − ρφ} (32)

where ρ is the charge density. The first two terms give the energy of the particle moving in the
field; they correspond to the wave mechanical Hamiltonian equation (7). The remaining terms
give the energy of the field in the presence of the particle. It is clear that when the two identical
terms involving the scalar potential are cancelled out this Hamiltonian (a) is positive definite,
(b) does not contain the scalar potential explicitly and (c) is gauge invariant. Therefore, the
lack of gauge invariance of the wave mechanical Hamiltonian is not necessarily due to its
non-relativistic nature.

The situation is similar in quantum electrodynamics. Its Lagrangian 4-density in standard
notation (Doughty 1980) is

L = iψ̄
↔
∂ψ/2 − mψ̄ψ + eψ̄Aνγ

νψ − FµνFµν/4 (33)



Gauge and wave mechanics 9173

where the parameters and operators now refer to the bare particles. The coupled Euler–
Lagrange equations arising from equation (33) are

∂ν∂
νAµ − ∂µ(∂ · A) = −eψ̄γ µψ and (i
∂ − m)ψ = −eAνγ

νψ (34)

where the equation on the left incorporates the two Maxwell equations involving the sources
and the one on the right is the Dirac equation for a particle in an electromagnetic field. The
energy–momentum tensor for the coupled Maxwell–Dirac fields is

T µν = ψ̄γ µ(i∂ν − eAν)ψ + FµσFσ
ν + gµνF λσFλσ /4 (35)

and the Hamiltonian 3-density H = T 00 is

H(xν) = ψ†{α · (−i∇ − eA) + mβ}ψ + (B2 + E2)/2 (36)

where ψ† is the adjoint of the Dirac field operator ψ which transforms as in equation (10)
under a gauge transformation. The operators act on occupation number states that have no
gauge properties. The Hamiltonian is the integral of equation (36) over coordinate space
and like the Hamiltonian of classical electrodynamics it does not contain the scalar potential
explicitly as does the Hamiltonian equation (7) of wave mechanics. It is readily checked that all
equations (33)–(36) are gauge invariant, they are unchanged by a gauge transformation. The
independence of gauge of the S-matrix, which corresponds to the probability amplitudes of
wave mechanics, is also well established. Consequently, although quantum electrodynamics
suffers from serious unresolved difficulties such as the renormalization needed to deal with
divergent self-energies, its fundamental equations are all gauge invariant. Wave mechanics
consists of using only the second of equations (34) (in this paper the non-relativistic version
of it) and as a result the symmetry and consistency of quantum field theory is lost. That
the Hamiltonian of wave mechanics for a particle in an electromagnetic field, equation (7),
depends on gauge is hardly surprising since it is derived from a Lagrangian, equation (4),
that also depends on gauge. However, since a gauge transformation causes the Lagrangian to
change by a term that is a total time derivative, namely e(dχ/dt), the resulting equation of
motion, the Schrödinger equation, retains the same form under a gauge transformation. The
underlying reason why semiclassical wave mechanics is not a fully gauge-invariant theory
is that it is not a properly formulated theory of the interaction between particles and fields.
It tells only half the story. It has, of course, other shortcomings such as the inability to
describe particle creation and destruction at high energies and these shortcomings led to
the development of quantum field theory. However, it has been shown in this paper that
despite the shortcomings of wave mechanics the probability amplitudes and energies that it
predicts are independent of gauge providing it is realized that to maintain a correspondence
with the physical energy only certain gauge transformations that preserve energy differences
are permissible.
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Appendix A

The most general solution of the canonical commutation relations [ri, pj
χ ] = ih̄δi,j and

[pi
χ , p

j
χ ] = 0 is

p′
χ = −ih̄∇ + h̄∇m(r, t) (A1)
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wherem(r, t) is an arbitrary dimensionless scalar function of r and t (Dirac 1947). Substituting
this into (7) gives

H ′
χ = {−ih̄∇ + h̄∇m(r, t) − e(A + ∇χ)}2/2m + e(φ − ∂χ/∂t). (A2)

If the wavefunction is taken to be of the form

� ′
χ (r, t) = �0(r, t) exp[i{eχ(r, t)/h̄ − m(rt)}]

= �χ(r, t) exp{−im(r, t)} (A3)

then it follows that

H ′
χ�

′
χ (r, t) = exp{−im(r, t)}Hχ�χ

= exp{−im(r, t)}[{−ih̄∇ − e(A + ∇χ)}2/2m + e(φ − ∂χ/∂t)]�χ. (A4)

Accordingly, the quantitym(r, t) in (A1) can be absorbed by the phase factor exp{−im(r, t)} in
the wavefunction (A3) and so can be ignored because, unlike in the case of the electromagnetic
gauge, it does not give rise to an extra factor analogous to ∂χ/∂t in the Hamiltonian.

Appendix B

We derive the relations φ0
2(r) = φ0

1(r)−g and A0
2(r) = A0

1(r)+∇f (r) between the potentials
of equations (13) and (14) and obtain explicit expressions for f (r) and g. For simplicity we
take R = 0. First, we deal with the scalar potential. Using E(y) = −∇yφ(y), where ∇y is
the 3-gradient with respect to y, we obtain

E1(y) = − 1

4πε0

∫
dr′ ρ(r′)∇y

1

|y − r′| (B1)

and so from equation (14)

φ0
2(y) = 1

4πε0

∫
dr′ ρ(r′)

∫ r

0
dy · ∇y

1

|y − r′| . (B2)

Performing the integration over y and putting in the limits y = 0 and r we obtain
φ0

2(r) = φ0
1(r) − φ0

1(0), so g = φ0
1(0), where

φ0
1(0) = 1

4πε0

∫
ρ(r′) dr′

|r′| . (B3)

In a similar way

A0
2(r) = µ0

4π

∫
dr′

∫ 1

0
u du r ×××

{
J(r′) ××× Eur

1

|ur − r′|
}
. (B4)

The triple vector product may be expanded as[
J(r′)

{
r · ∇ur

1

|ur − r′|
}

− {J(r′) · r}∇ur

1

|ur − r′|
]

(B5)

to give two terms in (B4). When the relations between derivatives u∇urh(ur) = ∇h(ur)

and (r · ∇)h(ur) = u(∂h(ur)/∂u) are used (Stewart 1999, 2000) where h is any function of
ur, in this case h(ur) = |ur − r′|−1, the first term in the integrand becomes u(∂h/∂u) =
(∂/∂u)(uh) − h and (B4) is

A0
2(r) = µ0

4π

∫
dr′

[
J(r′)

|r − r′| −
∫ 1

0
du

{
J(r′)

|ur − r′| + (J(r′) · r)∇r

1

|ur − r′|
}]

. (B6)
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The first term of this is just A0
1(r). Now consider the gradient with respect to r of the scalar

function f (r) with

f (r) = −µ0

4π

∫
dr′ {J(r′) · r}

∫ 1

0

du

|ur − r′| . (B7)

Noting that ∇{J(r′) · r} = J(r′) we obtain

∇f (r) = −µ0

4π

∫
dr′

∫ 1

0
du

[
J(r′)

|ur − r′| + {J(r′) · r}∇ 1

|ur − r′|
]
. (B8)

The two terms in (B8) correspond to the second and third terms in (B6) to give A0
2(r) =

A0
1(r) + ∇f (r) as required. Accordingly, the gauge function for the transformation is

χ(r,t) = f (r) + gt , where g and f are given by equations (B3) and (B7).
The integral over u in equation (B7) may be done by standard methods to give

f (r) = −µ0

4π

∫
dr′ {J(r′) · r}

r
ln{1 + x} (B9)

where

x = (1 − r/r ′)
(1 − cos θ)

[{
1 +

2r(1 − cos θ)

r ′(1 − r2/r ′ 2)

}1/2

− 1

]
(B10)

and r and r ′ are the magnitudes of the vectors and θ is the angle between them.
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